Nature:DNA重复序列是否致病取决于什么?

时间:2016年10月17日
来源:生物通

编辑推荐:

DNA重复序列在人类基因组中是很常见的。重复序列已经被提出作为一种进化机制,但是它们可能与人类疾病相关。现在,马克斯-普朗克分子遗传学研究所和Charité – Universitätsmedizin Berlin的科学家已经证明,DNA重复序列是否与人类疾病相关,取决于它们在基因组中的位置,相关研究结果发表在《Nature》杂志。

广告
   X   

生物通报道:DNA重复序列在人类基因组中是很常见的。重复序列已经被提出作为一种进化机制,但是它们可能与人类疾病相关。现在,马克斯-普朗克分子遗传学研究所和Charité – Universitätsmedizin Berlin的科学家已经证明,DNA重复序列是否与人类疾病相关,取决于它们在基因组中的位置,序列重复可能导致形成新的功能单位——称为拓扑关联域(TADs)。在《Nature》杂志上发表的一篇论文中,研究人员描述了不同大小的DNA重复序列,是如何产生新的TADs,重复的基因如何可以获得新的功能。这种机制是“进化过程中如何出现新的基因功能”的一种可能机制,并且对于人类遗传突变的解释,具有深远的影响。

拓扑相关的结构域(简称TADs)是基因组中空间分离的区域。它们是长度为一百万个碱基的DNA片段,包含一个或多个基因以及它们的调控元件(称为增强子)。后者控制着一个基因何时、在哪些细胞中被打开或关闭。TADs通过边界元素彼此相互分离,这样一段TAD中的基因活性就与邻近TADs中的基因活性无关。

通过研究SOX9基因区域中各种大小不同的重复片段,马克斯-普朗克分子遗传学研究所发育&疾病研究小组的科学家们,发现了TADs一个以前未知的功能。SOX9基因负责一个转录因子的表达,这个转录因子对于骨骼和男性性发育具有重要的作用。通过分析基因组的三维结构,研究人员证明两个大的TADs位于SOX9基因区。其中一个TAD包含了SOX9基因及其调控元件;另外一个TAD包含两个基因——KCNJ2和KCNJ16,两个钾通道及其调控元件。

各种类型的重复
在SOX9基因区域中的重复会导致完全不同的临床现象。为了理解这些差异,研究人员调查了三个重复,它们都包括SOX9基因的调控元件以及其他各种长度的DNA片段。

所检测的第一个重复可导致人类从女性到男性的性别反转。尽管受影响的个体拥有两个X染色体,但在形态上却是男性。科学家们发现,这种重复仅影响发生在SOX9 TAD内的DNA和调控元件。然而,令人惊讶的是,更大的重复——包括这个区域、但却延伸到邻近的基因KCNJ2和kcnj16从而包含相邻TAD的片段,却对性别决定没有临床效果。相比之下,更大的重复——不仅包含SOX9中的非编码DNA而且也包含相邻的KCNJ2基因,可导致Cooks综合征,这是一种遗传性的手/脚异常,特征是没有指甲、手指和脚趾缩短。

抢先索取SeqCap RNA序列捕获产品的资料

TAD内和TAD间的重复
这项研究的负责人Stefan Mundlos 指出:“我们必须区分TAD内和TAD间重复,这取决于它们的位置。在性别反转的情况下,TAD内的调控元件(TAD内)是重复的,而且效果依然限于该TAD。因此,只有该TAD中的基因是错误调控的,这意味着它被激活太多或太少。在SOX9基因的情况下,该基因的活性是增加的,从而导致男性性别的发育,即使受影响的个体从基因方面来说是女性。”

因为TADs在功能上是彼此相互分离,所以TAD内重复只影响一个TAD,对相邻的TADs并没有影响。相反,在TAD间重复的情况下,不仅SOX9区的调控元件是重复的,而且两个TADs之间的边界也是重复的。重复的边界定义了一个新的TAD(称为neo-TAD),其包括基因组的重复区域,并使它从其余基因组分离开来。

Mundlos说:“一个neo-TAD的影响,取决于它包含的基因组元件。如果neo-TAD只包含调控元件,但没有基因,那么它对机体没有影响。邻近基因规避了TAD边界的调控元件,并且不受影响。然而,如果一个neo-TAD包含两个调控元件和来自邻近TAD的基因,那么后者就能被neo-TAD内的调控元件(增强子)调节,从而导致基因错表达,这可能会引发异常或疾病。

具有基因和调控元件的TAD重复
这正是研究人员研究的第三种重复的情况,其会引发Cooks综合征。这种新的TAD不仅包含了SOX9基因的调控元件,而且也包含KCNJ2基因的一份拷贝。然后,在neo-TAD中的KCNJ2基因被SOX9基因的调控元件所调控。因此,在发育过程中它在错误的时间和错误的组织中被激活,从而引起了与此综合征相关的异常。

通过将TAD结构用于遗传变异的解释,科学家们可以对基因突变的影响做出较之以前更为精确的预测。例如,这涉及到导致遗传性疾病的重复以及癌细胞中的改变,其中重复经常发生。

重复是进化的一种驱动力。一个基因的重复可使得它的副本发展出与原来基因不同的新属性,这仍然不受这个过程的影响。通过启用neo-TADs中的调控元件和基因重复的新组合,这些重复可能代表着新基因功能出现的一种进化机制。

(生物通:王英)

生物通推荐原文摘要:
Formation of new chromatin domains determines pathogenicity of genomic duplications
Abstract: Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.

 

生物通微信公众号
微信
新浪微博


生物通 版权所有