编辑推荐:
每种植物都有一种独特的叶片形状,即使相同科的植物叶片形状也有差异。目前,Max Planck植物育种研究所的研究人员在2月14日《Science》杂志上发表的一项研究发现,碎米荠的全裂叶形状归因于一个独特的同源框基因——RCO基因,拟南芥没有这个基因,因此其叶片就不是全裂叶,而是简单完整的叶片形状。
菠菜看起来一点也不像欧芹,罗勒与百里香也没有相似之处。每种植物都具有一种独特的叶片形状,即使相同科的植物叶片形状也有差异。关于“叶片会是什么形状”的信息被储存在DNA中。根据德国科隆Max Planck植物育种研究所的研究人员称,碎米荠(Cardamine hirsuta)的全裂叶形状归因于一个独特的基因。这个同源框基因能够抑制小裂叶之间的细胞增殖和生长,使它们相互分离。拟南芥(Arabidopsis thaliana)没有这个基因,因此,它的叶片不是全裂叶,而是简单完整的叶片形状。这项研究成果,发表在2014年2月14日的《科学》(Science)杂志上。
Max Planck植物育种研究所的Miltos Tsiantis及其同事,在比较十字花科两种植物时发现了这个新基因,这两种植物分别是:碎米荠,具有小叶组成的全裂叶;拟南芥,具有简单的倒卵形或匙形叶片。研究人员发现,RCO((REDUCED COMPLEXITY)基因可使碎米荠的叶片形状更加复杂。拟南芥缺乏这个基因,因而也就缺乏小裂叶。RCO仅活跃在生长的叶片中。RCO能够确保在小裂叶形成位置之间的叶缘区域中,细胞增殖和生长是受阻的。Tsiantis解释说:“因为拟南芥叶片的生长并不受RCO基因抑制,因此叶片形状是简单和完整的。如果我们没有对比这两种植物,那么我们永远不会发现这种差异,因为很难在这个基因不存在的地方找到它。”
通过碎米荠中的一个突变,科学家们首次确定了RCO基因。当缺乏功能性RCO基因时,碎米荠再也不能产生小裂叶。RCO基因属于一个基因簇(3个基因组成),它通过一个单基因的复制,出现在进化过程中。在拟南芥中,这个最初的三重基因簇现在由一个单基因组成。当科学家们在实验室中将RCO基因重新转入拟南芥后,其进化被部分地逆转。Tsiantis称:“拟南芥的简单圆形叶片发育为深裂叶。仅通过一个RCO基因的转移,叶片形状就再次变得复杂,这表明小裂叶形成的大多数机制肯定还存在于拟南芥中,并不会随着RCO基因一同丢失。”
该研究团队还更加详细地研究了RCO序列,发现它是一个同源框基因。这些基因的功能就像是遗传开关,能够激活或关闭其它基因。科学家们还发现,RCO功能仅限于叶片形状;它并不能决定叶片是否形成。在碎米荠中,RCO基因缺失并不会产生任何其他可见的变化。因此,其效果仅限于对叶缘的生长抑制作用。在这里,RCO并没有对植物激素生长素(auxin)产生影响。这种特殊性使RCO相比较迄今确定的其他基因,更可能是叶片形状进化的驱动力。Tsiantis及其同事计划在未来几个月内解码这个基因的具体功能。
科学家们还研究了含RCO的基因簇中另外两个基因,这两个基因通过一个前体基因的复制,出现在进化过程中。他们想查明,RCO促进叶片复杂性的新功能是如何出现的。显然,主要功能差异在于基因的控制区,而非蛋白序列。控制区决定着相关基因何时及如何被读取。如果其它两个基因中的一个受到RCO控制区的影响,拟南芥就会形成复杂的叶片形状。因此,碎米荠的全裂叶主要归因于RCO基因的控制区。(生物通:王英)
生物通推荐原文摘要:
Leaf Shape Evolution Through Duplication, Regulatory Diversification, and Loss of a Homeobox Gene
Abstract: In this work, we investigate morphological differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta, which has dissected leaves comprising distinct leaflets. With the use of genetics, interspecific gene transfers, and time-lapse imaging, we show that leaflet development requires the REDUCED COMPLEXITY (RCO) homeodomain protein. RCO functions specifically in leaves, where it sculpts developing leaflets by repressing growth at their flanks. RCO evolved in the Brassicaceae family through gene duplication and was lost in A. thaliana, contributing to leaf simplification in this species. Species-specific RCO action with respect to its paralog results from its distinct gene expression pattern in the leaf base. Thus, regulatory evolution coupled with gene duplication and loss generated leaf shape diversity by modifying local growth patterns during organogenesis.
生物通 版权所有